

European Technical Assessment

eta-14/0219 of 8/9/2016

GENERAL PART

TECHNICAL ASSESSMENT BODY ISSUING THE ETA AND DESIGNATED ACCORDING TO ARTICLE 29 OF THE REGULATION (EU) NO 305/2011

VTT EXPERT SERVICES LTD

TRADE NAME OF THE CONSTRUCTION PRODUCT

EJOT THROUGH BOLTS BA-V, BA-F, BA-E, BA-E HCR

PRODUCT FAMILY TO WHICH THE CONSTRUCTION PRODUCT BELONGS

TORQUE CONTROLLED EXPANSION ANCHORS OF SIZES M8, M10, M12 AND M16 FOR USE IN CONCRETE

MANUFACTURER

EJOT BAUBEFESTIGUNGEN GMBH
IN DER STOCKWIESE 35
D-57334 BAD LAASPHE
GERMANY

MANUFACTURING PLANT

EJOT PLANT 14

THIS EUROPEAN TECHNICAL ASSESSMENT CONTAINS

14 PAGES INCLUDING 11 ANNEXES WHICH FORM AN INTEGRAL PART OF THIS ASSESSMENT

THIS EUROPEAN TECHNICAL ASSESSMENT IS ISSUED IN ACCORDANCE WITH REGULATION (EU) NO 305/2011, ON THE BASIS OF

GUIDELINES FOR EUROPEAN TECHNICAL APPROVAL ETAG 001 METAL ANCHORS FOR USE IN CONCRETE PART 1 AND PART 2, APRIL 2013, USED AS EUROPEAN ASSESSMENT DOCUMENT (EAD).

THIS VERSION REPLACES

EUROPEAN TECHNICAL ASSESSMENT ETA-14/0219 from 13/06/2014

SPECIFIC PART

Technical description of the product

The EJOT through bolt BA-V is an anchor made of galvanized steel (designated as S-KA). The EJOT through bolt BA-F is an anchor made of hot dip galvanized steel (designated as S-KAK). The EJOT through

BA-E is an anchor made of stainless steel (designated as S-KAH). The EJOT through bolt BA-E HCR is an anchor made of high corrosion resistant stainless steel (designated as S-KAH HCR). The anchors are made in sizes M8, M10, M12 and M16. Anchors are placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and description of the product are given in Annexes A.

2. Specification of the intended use in accordance with the applicable European Assessment Document, EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance for static and quasi-static action acc. ETAG 001, Annex C or CEN/TS 1992-4:2009	See Annex C1
Characteristic shear resistance for static and quasi-static action acc. ETAG 001, Annex C or CEN/TS 1992-4:2009	See Annex C2
Characteristic resistance for Seismic Performance Category C1	See Annex C6
Displacements under static and quasi-static action	See Annex C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire exposure	See Annex C3
Characteristic shear resistance under fire exposure	See Annex C4

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the

provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

3.5 Protection against noise (BWR5):

Not relevant.

3.6 Energy economy and heat retention (BWR6):

Not relevant.

3.7 Sustainable use of natural resources (BWR7)

The sustainable use of natural resources was not investigated.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies:

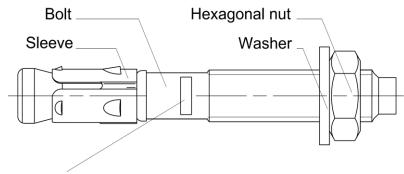
Product	Intended use	Level or Class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	€	1

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at VTT Expert Services Ltd.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Espoo on September 8, 2016 by VTT Expert Services Ltd


Tiina Ala-Outinen

Business Manager

Product Manager

Official Journal of the European Communities L 254 of 08.10.1996

EJOT through bolt

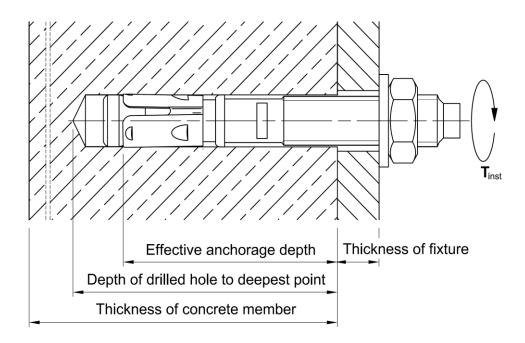
Marking: Identifying mark: S

Anchor identity: KA

Category *1): H (stainless steel)

K (hot dip galvanized)

Thread size: M8 ... M16

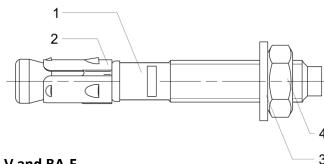

Max. fixture thickness: t_{fix} Material *1): HCR

Examples: BA-V: S-KA 10/20 - zinc plated

BA-F: S-KAK 10/20 - hot dip galvanized BA-E: S-KAH 10/20 - stainless steel A4 BA-E HCR: S-KAH 10/20 HCR - stainless steel HCR

*1): Where applicable

EJOT through bolt after installation


EJOT through bolt

Product description

Installation condition

Annex A1

EJOT through bolt

Table A1: Materials BA-V and BA-F

Part	Designation	Diameter	Material ^{1) 2)}
1	Bolt	M8 - M16	Cold forged steel, EN 10263-2
2	Sleeve	Cold rolled galvanized steel strip, EN 10147	
3	Washer	M8 - M16 Electroplated steel, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)	
4	Hexagonal Nut	M8 - M16	Steel, electroplated, property class 8, DIN 934 (EN ISO 4032)

¹⁾ **BA-V:** Parts 1, 3 and 4 are zinc electroplated according to EN ISO 4042 ≥ 5μm and bright passivated

Table A2: Materials BA-E

Part	Designation	Diameters	Material
1	Bolt	M8 - M16	Cold forged stainless steel, EN 10088-3
2	Sleeve	M8 - M16	Stainless steel strip, EN 10088-2
3	Washer	M8 - M16	Stainless steel, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)
4	Hexagonal Nut	M8 - M16	Stainless steel, property class 80, DIN 934 (EN ISO 4032)

Table A3: Materials BA-E HCR

Part	Designation	Diameters	Material
1	Bolt	M8 - M16	Cold forged stainless steel, EN 10088-3, 1.4529 / 1.4565
2	Sleeve	M8 - M16	Stainless steel strip, EN 10088-2
3	Washer	M8 - M16	Stainless steel, W 1.4529 / 1.4565, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)
4	Hexagonal Nut	M8 - M16	Stainless steel, property class 70, W 1.4529 / 1.4565 DIN 934 (EN ISO 4032)

Product description Materials Annex A2

 $^{^{2)}}$ **BA-F:** Parts 1, 3 and 4 are hot dip galvanized > 40 μ m according to EN ISO 10684

Specifications of intended use

Anchorages subject to:

- Static, quasi-static loads
- Seismic actions for Performance Category C1
- Fire exposure

Base materials:

- Cracked and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C20/25 to C50/60 according to EN 206: 2013

Use conditions (Environmental conditions):

- The BA-V and BA-F anchors may only be used in structures subject to dry indoor conditions, indoor with temporary condensation.
- The BA-E anchors may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.
- The BA-E HCR anchors may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

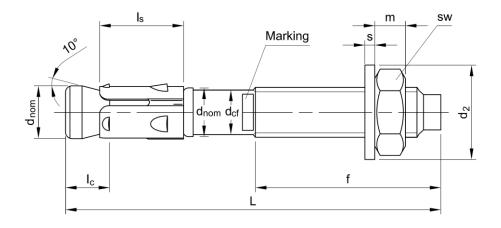
- The anchorages are designed in accordance with ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 "Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic application the anchorages are designed in accordance with EOTA TR 045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- For application with resistance under fire exposure the anchorages are designed in accordance with the method given in EOTA TR 020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

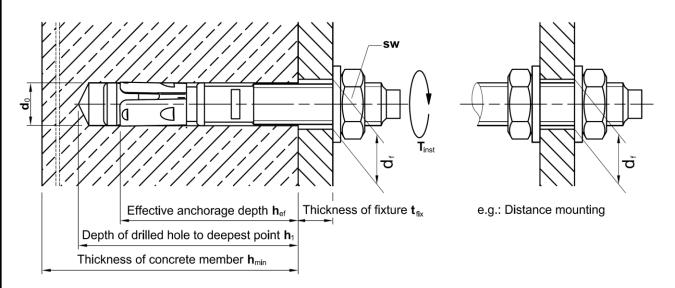
Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacings not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust
- Application of specified torque moment using a calibrated torque tool
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength non-shrinkage mortar. No shear or oblique tension loads are allowed in the direction of a not filled aborted hole.

Annex B1

EJOT through bolt




Table B1: Dimensions of the anchor

Main d	Main dimensions Stud bolt		Cone bolt		Cone bolt Expansion sleeve Washer		Washer		Hexagonal nut		
Size	L [mm]	f [mm]	d _{cf} [mm]	d _{nom} [mm]	l _c [mm]	l _s [mm]	s [mm]			SW [mm]	m [mm]
M8	62420	22220	7,1	8	20,9	15,9	≥1,6	≥8,4	≥16	13	≥6,5
M10	82420	37215	9,0	10	25,7	17,9	≥2,0	≥10,5	≥20	≥16	≥8,0
M12	98420	48210	10,8	12	30,3	19,1	≥2,5	≥13,0	≥24	≥18	≥10,0
M16	118420	60202	14,6	16	38,1	26,3	≥3,0	≥17,0	≥30	24	≥13,0

EJOT through bolt

Intended Use
Anchor dimensions

Annex B2

Table B2: Installation data

		Anchor size					
EJOT through bolt	:	M8	M10	M12	M16		
Drill hole diameter	d_0	[mm]	8	10	12	16	
Cutting diameter at the upper tolerance limit (maximum diameter bit)	d _{cut,max} ≤	[mm]	8,45	10,45	12,5	16,5	
Depth of drilled hole to deepest point	h ₁ ≥	[mm]	60	75	90	110	
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18	
Thickness of fixture	t _{fix,max}	[mm]	358	338	322	302	
Width across flats	SW	[mm]	13	≥16	≥18	24	
Required BA-V / BA-F	-	[NIm]	20 / 15 1)	35	50	120	
torque BA-E / BA-E HCR	T _{inst}	[Nm]	20	35	70	120	

¹⁾ Installation torque for BA-V is 20 Nm and for BA-F 15 Nm

Table B3: Minimum thickness of concrete member, spacing and edge distance

	Anchor size					
EJOT through bolt	M8	M10	M12	M16		
Minimum thickness of concrete member	h _{min}	[mm]	100	120	140	170
Minimum anadina	S _{min}	[mm]	50	55	60	70
Minimum spacing		[mm]	50	80	90	120
Minimum edge distance		[mm]	50	50	55	85
		[mm]	50	100	145	150

Intervalues may be interpolated linearly

EJOT through bolt	
Intended Use Installation data	Annex B3

Table C1: Characteristic resistances under tension loads in case of static and quasi-static loading for design method A according to ETAG 001, Annex C or CEN/TS 1992-4

		Anchor size					
EJOT through bolt	EJOT through bolt						
Steel failure					l.		
Characteristic resistance BA-V / BA-F	$N_{Rk,s}$	[kN]	13	26	38	69	
Characteristic resistance BA-E / BA-E HCR	$N_{Rk,s}$	[kN]	15	24	35	75	
Partial safety factor	γ _{Ms} 1)	[-]		1	.,4		
Pull-out failure	•						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	20	35	
		C25/30	1,04				
		C30/37	1,10				
Increasing factor for N	Ψ _c	C35/45	1,16				
Increasing factor for N _{Rk,p}	Ψ_{C}	C40/50		1,20			
		C45/55		1,24			
		C50/60	1,28				
Partial safety factor	γ _{Mp} 1)	[-]		1,8 2) 1,5			
Concrete cone and splitting failure							
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	
Factor for cracked concrete	k _{cr}	[-]		7	⁷ ,2		
Factor for non-cracked concrete	k _{ucr}	[-]	10,1				
Spacing	S _{cr,N}	[mm]	135	180	210	255	
Edge distance	C _{cr,N}	[mm]	68	90	105	128	
Spacing (splitting)	S _{cr,sp}	[mm]	180	240	280	340	
Edge distance (splitting)	C _{cr,sp}	[mm]	90	120	140	170	
Partial safety factor	γ _{Mc} 1) γ _{Msp} 1)	[-]		1,8 ²⁾		1,5 ³⁾	

EJOT through bolt Annex C1 **Performance** Characteristic resistance under tension loads

¹⁾ In absence of other national regulations ²⁾ The installation safety factor of γ_2 = 1,2 is included ³⁾ The installation safety factor of γ_2 = 1,0 is included

Table C2: Characteristic resistances under shear loads in case of static and quasi-static loading for design method A according to ETAG 001, Annex C or CEN/TS 1992-4

				Anch	or size	
EJOT through bolt			M8	M10	M12	M16
Steel failure without lever arm						
Characteristic resistance BA-V / BA-F	$V_{Rk,s}$	[kN]	10	18	23	44
Characteristic resistance BA-E / BA-E HCR	$V_{Rk,s}$	[kN]	11	17	25	47
Partial safety factor	γ _{Ms} 1)	[-]		1,	25	
Factor for considering ductility	k ₂	[-]		1	,0	
Steel failure with lever arm						
Characteristic resistance BA-V / BA-F	M ⁰ _{Rk,s}	[Nm]	21	48	72	186
Characteristic resistance BA-E / BA-E HCR	M ⁰ _{Rk,s}	[Nm]	22	45	79	200
Partial safety factor	γ _{Ms} 1)	[-]	1,25			
Concrete pryout failure						
k-factor	k ₍₃₎	[-]	1 2			
Partial safety factor	γ _{Mc} 1)	[-]		1	,5	
Concrete edge failure						
Effective length of anchor under shear load	I _f	[mm]	45	60	70	85
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16
Cracked concrete without any edge reinforcement			1,0			
Cracked concrete with straight edge reinforcement > Ø12 mm	$\Psi_{\text{ucr,V}}$	[-]		1	,2	
Cracked concrete with edge reinforcement and closely spaced stirrups (a ≤ 100mm) or non-cracked concrete				1	,4	
Partial safety factor	γ _{Mc} 1)	[-]		1	,5	

¹⁾ In absence of other national regulations

EJOT through bolt	
Performance	Annex C2
Characteristic resistance under shear loads	

Table C3: Characteristic resistances under tension loads in case of fire exposure for design method A according to EOTA TR 020 and ETAG 001, Annex C or CEN/TS 1992-4

					Ancl	hor size		
EJOT thr	ough bolt			M8	M10	M12	M16	
Steel failure								
		R30	[kN]	1,3	2,3	3,6	5,3	
	BA-V / BA-F	R60	[kN]	0,7	1,3	2,0	3,0	
	BA-V / BA-F	R90	[kN]	0,4	0,8	1,3	1,8	
Characteristic registance N		R120	[kN]	0,3	0,5	0,9	1,3	
Characteristic resistance N _{Rk,s,fi}		R30	[kN]	5,7	9,1	13,2	24,5	
	BA-E /	R60	[kN]	3,9	6,1	8,9	16,6	
	BA-E HCR	R90	[kN]	2,0	3,2	4,7	8,7	
		R120	[kN]	1,1	1,8	2,6	4,8	
Pull-out failure								
	Characteristic resistance N _{Rk.p.fi} BA-V / BA-F	R30	[kN]	1,3	2,3	3,0	5,0	
Characteristic resistance N		R60	[kN]	1,3	2,3	3,0	5,0	
Characteristic resistance N _{Rk,p,fi}	BA-V / BA-F	R90	[kN]	1,3	2,3	3,0	5,0	
		R120	[kN]	1,0	1,8	2,4	4,0	
		R30	[kN]	1,3	2,3	3,0	5,0	
Characteristic registers as N	BA-E /	R60	[kN]	1,3	2,3	3,0	5,0	
Characteristic resistance N _{Rk,p,fi}	BA-E HCR	R90	[kN]	1,3	2,3	3,0	5,0	
		R120	[kN]	1,0	1,8	2,4	4,0	
Concrete cone and splitting failu	re 1)							
		R30	[kN]	2,4	5,0	7,4	12,0	
Characteristic resistance N ⁰ _{Rk.c.fi}		R60	[kN]	2,4	5,0	7,4	12,0	
Characteristic resistance in _{Rk,c,fi}		R90	[kN]	2,4	5,0	7,4	12,0	
		R120	[kN]	2,0	4,0	5,9	9,6	
		S _{cr,N,fi}	[mm]		4	x h _{ef}		
Spacing	Spacing		[mm]	50	55	60	70	
		C _{cr,N,fi}	[mm]		2	x h _{ef}	<u> </u>	
Edge distance				Fire attack	from one	side: c _{min} = 2	2 x h _{ef}	
Luge distance		C _{min}	[mm]	Fire attack	from mor	e than one s	ide:	
				$c_{min} \ge 300 \text{ mm and } \ge 2 \text{ x h}_{ef}$				

As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed

Design under fire exposure is performed according to the design method given in EOTA TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 § 2.2.1.

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

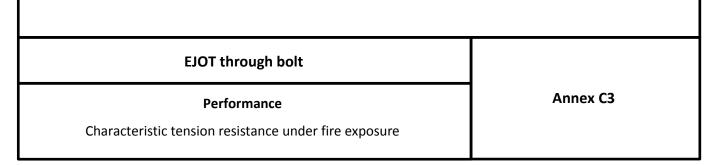


Table C4: Characteristic resistances under shear loads in case of fire exposure for design method A according to EOTA TR 020 and ETAG 001, Annex C or CEN/TS 1992-4

FIOT the	wah halt			Anchor size					
EJOT thro	ougn boit			M8	M10	M12	M16		
Steel failure without lever arm									
		R30	[kN]	1,3	2,3	3,6	5,3		
	BA-V / BA-F	R60	[kN]	0,7	1,3	2,0	3,0		
	DA-V / DA-F	R90	[kN]	0,4	0,8	1,3	1,8		
Characteristic resistance V _{Rk,s,fi}		R120	[kN]	0,3	0,5	0,9	1,3		
Characteristic resistance V _{Rk,s,fi}		R30	[kN]	5,7	9,1	13,2	24,5		
	BA-E /	R60	[kN]	3,9	6,1	8,9	16,6		
	BA-E HCR	R90	[kN]	2,0	3,2	4,7	8,7		
		R120	[kN]	1,1	1,8	2,6	4,8		
Steel failure with lever arm									
P		R30	[Nm]	1,8	3,6	6,4	16,2		
	BA-V / BA-F	R60	[Nm]	1,3	2,6	4,6	11,7		
	DA-V / DA-I	R90	[Nm]	0,8	1,6	2,8	7,2		
Characteristic resistance M ⁰ _{Rk,s,fi}		R120	[Nm]	0,6	1,1	1,9	4,9		
Characteristic resistance ivi Rk,s,fi		R30	[Nm]	5,8	11,7	20,4	52,0		
	BA-E /	R60	[Nm]	4,0	7,9	13,9	35,2		
	BA-E HCR	R90	[Nm]	2,1	4,2	7,3	18,5		
		R120	[Nm]	1,1	2,3	4,0	10,2		
Concrete pryout failure									
k-factor	k ₍₃₎ [-] 1 2								
		R30	[kN]	2,4	10,0	14,8	24,0		
Characteristic resistance V _{Rk,cp,fi}		R60	[kN]	2,4	10,0	14,8	24,0		
Characteristic resistance V _{Rk,cp,fi}		R90	[kN]	2,4	10,0	14,8	24,0		
		R120	[kN]	2,0	8,0	11,8	19,2		

Concrete edge failure

The initial value $V^0_{Rk,c,fi}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

$$V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0} \ (\le R90)$$
 $V_{Rk,c,fi}^{0} = 0.20 \times V_{Rk,c}^{0} \ (R120)$

with $V_{Rk,c}^0$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

Design under fire exposure is performed according to the design method given in EOTA TR 020.

Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 § 2.2.1.

EOTA TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and ≥ 2 x h_{ef} .

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

EJOT through bolt	
Performance	Annex C4
Characteristic shear resistance under fire exposure	

Table C5: Displacements under tension loads for static and quasi-static loading

				Ancho	r size	
EJOT through bolt		M8	M10	M12	M16	
	N	[kN]	2,0	3,6	4,8	9,5
Cracked and non-cracked concrete C20/25 - C50/60	δ_{N0}	[mm]	0,3	0,6	0,6	0,7
220/23 230/00	δ_{N^∞}	[mm]	1,8	1,6	2,0	1,4

Table C6: Displacements under shear loads for static and quasi-static loading

				Ancho	r size	
EJOT through bolt		M8	M10	M12	M16	
	V	[kN]	5,7	10,3	13,1	25,1
Cracked and non-cracked concrete C20/25 - C50/60	δ_{V0}	[mm]	1,7	1,7	2,4	3,2
023/23 035/33	δ _{V∞}	[mm]	2,6	2,6	3,6	4,8

EJOT through bolt

Performance

Displacements under tension and shear loads

Annex C5

Table C7: Characteristic resistances under tension loads in case of seismic action Design acc. EOTA TR 045: Performance Category C1

				Ancho	or size	
EJOT through bolt			M8	M10	M12	M16
Steel failure						
Characteristic resistance BA-V	$N_{Rk,s,seis}$	[kN]	13	26	38	69
Characteristic resistance BA-E	$N_{Rk,s,seis}$	[kN]	15	24	35	75
Partial safety factor	γ _{Ms,seis} 1)	[-]	1,4			
Pull-out failure			_			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,seis}$	[kN]	5	9	12	20
Partial safety factor	γ _{Mp,seis} 1)	[-]		1,8 ²⁾		1,5 ³⁾
Concrete cone and splitting failure 4)						
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85
Partial safety factor	γ _{Mc,seis} 1) γ _{Msp,seis} 1)	[-]		1,8 2)		1,5 ³⁾

¹⁾ In absence of other national regulations

Table C8: Characteristic resistances under shear loads in case of seismic action Design acc. EOTA TR 045: Performance Category C1

EJOT through bolt				Anche	or size	
			M8	M10	M12	M16
Steel failure without lever arm						
Characteristic resistance BA-V	$V_{Rk,s,seis}$	[kN]	5,6	11,9	15,4	31,2
Characteristic resistance BA-E	$V_{Rk,s,seis}$	[kN]	8,7	11,2	18,3	31,5
Partial safety factor	γ _{Ms,seis} 1)	[-]	1,25			
Concrete pryout and concrete edge failure 2)						
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85
Partial safety factor	γ _{Mc,seis} 1)	[-]	1,5			

¹⁾ In absence of other national regulations

Performance Annex C6 Characteristic tension and shear resistances under seismic action, Performance Category C1

 $^{^{2)}}$ The installation safety factor of γ_{2} = 1,2 is included

 $^{^{3)}}$ The installation safety factor of γ_2 = 1,0 is included

⁴⁾ For concrete cone and splitting failure, see EOTA TR 045

 $^{^{2)}}$ For concrete pryout and edge failure, see EOTA TR 045